On asymptotic behavior of positive solutions of $\bm{x" = e^{\alpha \lambda t} x^{1 + \alpha \/}}$ with $\bm{\alpha < -1\/}$

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

construction of vector fields with positive lyapunov exponents

in this thesis our aim is to construct vector field in r3 for which the corresponding one-dimensional maps have certain discontinuities. two kinds of vector fields are considered, the first the lorenz vector field, and the second originally introced here. the latter have chaotic behavior and motivate a class of one-parameter families of maps which have positive lyapunov exponents for an open in...

15 صفحه اول

Differential Delayed Equations - Asymptotic Behavior of Solutions and Positive Solutions

Brief Summary of Basic Notions For a b R , ∈ , a b < , let ([ ] ) n C a b R , , be the Banach space of the continuous functions from the interval [ ] a b , into n R equipped with the supremum norm | ⋅ | . In the case 0 a r = − < , 0 b = , we shall denote this space as r C , that is, ([ 0] ) n r C C r R := − , , and put 0 sup ( ) r r σ φ φ σ − ≤ ≤ || || = | | for r C φ∈ . If R σ ∈ , 0 A ≥ and ([...

متن کامل

Asymptotic Behavior of Positive Solutions of Some Quasilinear Elliptic Problems

We discuss the asymptotic behavior of positive solutions of the quasilinear elliptic problem −∆pu = au p−1 − b(x)u, u|∂Ω = 0 as q → p − 1 + 0 and as q → ∞ via a scale argument. Here ∆p is the p-Laplacian with 1 < p < ∞ and q > p−1. If p = 2, such problems arise in population dynamics. Our main results generalize the results for p = 2, but some technical difficulties arising from the nonlinear d...

متن کامل

Asymptotic Behavior of Solutions of Impulsive Differential Equations with Positive and Negative Coefficients

This paper is concerned with the impulsive delay differential equations with positive and negative coefficients  x′(t) + p(t)x(t− τ)− q(t)x(t− σ) = 0, t ≥ t0, t 6= tk, x(tk) = bkx(tk ) + (1− bk) (∫ tk tk−τ p(s+ τ)x(s)ds − ∫ tk tk−σ q(s+ σ)x(s)ds ) , k = 1, 2, 3, · · · . Sufficient conditions are obtained for every solution of the above equation tends to a constant as t→∞.

متن کامل

Global Asymptotic Behavior of Positive Solutions for Exponential Form Difference Equations with Three Parameters∗

In this paper, we study a class of second order difference equations with three paremeters. With positive initial values, the asymptotic behavior of positive solutions are investigated.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hiroshima Mathematical Journal

سال: 2007

ISSN: 0018-2079

DOI: 10.32917/hmj/1187916317